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Abstract: 

A pedestrian description is given for the Fast-Multipole Method and its application to computing 

the inductive voltages in an electrical-network model for Rutherford-type cables.  Some 

numerical results are presented which demonstrate the efficiency and accuracy of the method. 

 

Introduction: 

There is presently considerable interest in improving our understanding of the stability 

properties of Rutherford-type cables made from Nb3Sn strands.  Recent measurements 

performed at Fermilab [1, 2] have shown that short cable samples, measured under self-

field conditions, can have critical current degradations of 80% or more compared to 

expectations from measurements on individual strands.  Since Nb3Sn magnet technology 

will play a vital role in the LHC and future accelerators, it is imperative that the stability 

issues related to strands, cables, and magnets be thoroughly investigated. 

Previous efforts to model quench dynamics in cables have either restricted themselves to 

treating a small number of strands, not modeling the true transposition pattern, or 

neglected the majority of inductive linkages between various parts of the cable [3-9].  

The reasons for this neglect are undoubtedly due to the computational difficulty in 

treating the complete set of inductive interactions in a long cable with many strands.  

Although transposing the strands does reduce inductive couplings with respect to a 

changing applied field, it is well known that transposition does virtually nothing to reduce 

the couplings in a changing self-field [10].  It is also displeasing, from a computational 

perspective, to completely neglect interactions simply for lack of a better alternative. 



This note describes a computational method for efficiently solving the complete system 

of electromagnetic equations (including the full set of inductive interactions) describing a 

network representation of a cable. 

 

Problem Description: 

The most detailed description of current and heat redistribution between strands in a 

cable can be obtained by modeling the cable as an electrical network [3, 4, 7, 9, 11].  In 

such a model the strands are represented as wires, and the inter-strand contacts as ohmic 

resistors.   

Consider a cable consisting of  strands and having a transposition pitch length .  

For computational purposes, each pitch length can be divided longitudinally into a set of 

 unit cells.  Each unit cell contains 

sN pL

sN 22 −sN  sections of strand,  adjacent contacts, 

and  crossover contacts.  Each contact is represented as a linear resistance, and 

each strand section as a resistance (either linear or nonlinear) in series with a self 

inductance; in addition, each pair of strand sections has a mutual inductance linking 

them.  The complete set of electromagnetic equations, for determining the strand and 

contact currents, can be derived from Kirchoff’s laws. 
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The fact that the inductance matrix is dense poses a major difficulty in the solution of the 

electromagnetic equations: the storage requirements for the inductance matrix scale like 

, and a direct inversion of the matrix would require  operations, where 

 and  is the total number of pitches in the cable.  As  and  

 increase, a direct inversion of the inductance matrix quickly becomes prohibitively 

expensive. 
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The only practical method for solving the complete system of equations, describing the 

electromagnetics of a long cable, is to use an iterative method such as conjugate 

gradients, or one of the other subspace projection methods [12].  In the conjugate 

gradients method the solution is generated as a linear combination of orthogonal vectors 

which span the solution space.  The orthogonal vectors are generated one at a time by 

matrix vector products [12, 13].  At each iteration, the inductance matrix will need to be 

multiplied by a vector, and this matrix-vector multiplication will require  operations 2N



and the storage of  values.  For large  the matrix-vector multiplications become a 

bottleneck in the computation, and we would like to reduce the operation count and 

storage requirements to something proportional to  instead of .  Both of these 

criteria can be realized by implementing a modern computational method called the Fast-

Multipole Method (FMM) [14-17].  Another method, the Pre-corrected Fast Fourier 

Transform Method (PCFFTM) [17] can also be used, but it has some disadvantages with 

respect to FMM, such as requiring the creation of fictitious source currents by projecting 

the true currents onto a regular lattice. 
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The Fast-Multipole Method:                    

When the currents in the various strand sections vary in time, an electric field is induced 

throughout the entire cable.  The inductive voltage drop, along a given strand section, is 

found by integrating the induced electric field along the strand section.  If the vector 

defining strand section j  is denoted by l
r

, and its current is denoted by , then the 

induced voltage drop along strand 

jI

j  is given by: 
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                    (1) 

where  is the separation distance between the integration points on strand sections  

and .  The values of  for arbitrary orientation and placement of strand sections  

and  can be found in the literature [18].  A direct evaluation of the summation in (1) 

will take  operations; the FMM allows this summation to be approximated, to high 

accuracy, with an operation count of order unity, and without having to store the majority 

of the  values.  Since the summation needs to be evaluated  times in a single 

matrix-vector multiply, the FMM reduces the storage requirement and operation count by 

an order of magnitude. 
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The basic idea of the FMM is to use a truncated multipole expansion, derived from the 

well-known multipole expansion of the kernal 1  [15, 16, 19], to represent the electric 

field induced by a collection of strand sections; this multipole expansion can then be used 

to evaluate the line integrals along distant strand sections.  When strand sections are too 

close to one another a truncated multipole expansion will become a less accurate 

representation of the induced electric field, therefore, for strand sections in the same local 

neighborhood the FMM will evaluate the pairwise interactions exactly, using the known 

expressions [18], and the multipole expansion is only used to compute interactions 

between well-separated strand sections. 

kjr ,/

The reason that the FMM is able to reduce the complexity of the matrix-vector multiply 

so dramatically is because it represents the effects of a large number of current sources by 

a short series; if the number of terms in the series is much smaller than the number of 

sources being represented, then the number of operations and the storage requirements 

become much smaller.  The massive ‘information compression’ achieved by the FMM is 

possible because the multipole expansion converges so rapidly, and because more distant 

source currents can be resolved in progressively larger groups and represented, to the 

same accuracy, by a series of the same length. 

 

Numerical Results:                    

 To demonstrate the efficiency of the FMM, compared to a direct evaluation of the 

matrix-vector product, a series of tests were performed on various lengths of a 40-strand 

Rutherford cable.  The results of the tests are shown in Table 1. 
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   98.1 FMM         48.670 
Direct     4774.285

      8.404x10-3     11.264 

   49.5 FMM         24.255 
Direct     1201.287

      8.320x10-3      5.632 

   24.8 FMM         12.208 
Direct       302.355

      8.194x10-3      2.816 

   12.4 FMM           6.059 
Direct        74.988

         7.972x10-3      1.408 

    6.3 FMM           3.004 
Direct      18.807

      7.552x10-3      0.704  

Table 1 Comparison of computation times for a single evaluation of the inductive 
voltage vector in a 40-strand Rutherford cable of various lengths.  It can be 
seen that the FMM scales linearly with cable length while the direct 
computation scales quadratically; in addition, the FMM maintains very high 
accuracy (RMS Error < 0.01%). 

 
It is clear from Table 1 that the FMM has a profound impact on the time taken to solve 

the linear-equation system by iteration: for an 11-meter long 40-strand cable the 

computation time is reduced by a factor of 100, and for longer cables the speed up will be 

even more dramatic. 

 
Conclusion:   
 
The FMM has been implemented for evaluating inductive voltages in the network model 

of a Rutherford-type cable, and its dramatic impact on computation times has been 

demonstrated.  When combined with a thermal-analysis solver, this FMM-based network 

model will make possible the efficient modeling of stability and quench dynamics in long 

cables containing many strands.  The resulting combined thermal-electromagnetic solver 

should contribute vastly to our understanding of quench propagation and traveling normal 

zones in cables, and the dependence of these phenomena on the distribution of material 

properties, strand characteristics, and transport current levels.                      
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